Skip to main content

Percentage (சதவீதம்)

Overview: Percentage (சதவீதம்)

tip

This category involves problems related to percentages. Percentage means "per hundred" and is represented by the symbol %. The general approach is to express one quantity as a fraction of another and then multiply by 100. Key concepts include converting fractions to percentages, calculating percentage increase/decrease, and comparing values using percentages.

Definitions and Formulas (வரையறை மற்றும் சூத்திரங்கள்)

Here are some common formulas used in percentage problems:

  1. Converting a Percentage to a Fraction (சதவீதத்தை பின்னமாக மாற்றுதல்): To convert X% to a fraction, divide X by 100.

    X%=X100X\% = \frac{X}{100}
  2. Converting a Fraction to a Percentage (பின்னத்தை சதவீதமாக மாற்றுதல்): To convert a fraction a/b to a percentage, multiply it by 100.

    (ab)×100%\left(\frac{a}{b}\right) \times 100\%
  3. Effect of Price Change on Consumption (விலை மாற்றத்தின் விளைவு):

    • If the price of a commodity increases by R%, the reduction in consumption so as not to increase the expenditure is: Reduction%=(R100+R)×100%\text{Reduction} \% = \left(\frac{R}{100 + R}\right) \times 100\%
    • If the price of a commodity decreases by R%, the increase in consumption so as not to decrease the expenditure is: Increase%=(R100R)×100%\text{Increase} \% = \left(\frac{R}{100 - R}\right) \times 100\%
  4. Population Growth (மக்கள்தொகை வளர்ச்சி): If the population of a town is P and it increases at the rate of R% per annum:

    • Population after 'n' years (n ஆண்டுகளுக்குப் பிறகு மக்கள்தொகை): P(1+R100)nP \left(1 + \frac{R}{100}\right)^n
    • Population 'n' years ago (n ஆண்டுகளுக்கு முன்பு மக்கள்தொகை): P(1+R100)n\frac{P}{\left(1 + \frac{R}{100}\right)^n}
  5. Depreciation (தேய்மானம்): If the value of a machine is P and it depreciates at the rate of R% per annum:

    • Value after 'n' years (n ஆண்டுகளுக்குப் பிறகு மதிப்பு): P(1R100)nP \left(1 - \frac{R}{100}\right)^n
    • Value 'n' years ago (n ஆண்டுகளுக்கு முன்பு மதிப்பு): P(1R100)n\frac{P}{\left(1 - \frac{R}{100}\right)^n}

Example Problem

Question: If 80% of A = 50% of B and B = X% of A, then what is the value of X?

Solution:

  1. Write the given equation: 80% of A=50% of B80\% \text{ of } A = 50\% \text{ of } B
  2. Convert percentages to fractions: 80100×A=50100×B\frac{80}{100} \times A = \frac{50}{100} \times B
  3. Solve for B in terms of A: B=80100×10050×AB = \frac{80}{100} \times \frac{100}{50} \times A B=8050A=85AB = \frac{80}{50} A = \frac{8}{5} A
  4. Convert the fraction to a decimal: B=1.6AB = 1.6 A
  5. Use the second given equation B = X% of A: B=X100×AB = \frac{X}{100} \times A
  6. Equate the two expressions for B and solve for X: 1.6A=X100A1.6 A = \frac{X}{100} A Cancel A from both sides: 1.6=X1001.6 = \frac{X}{100} X=1.6×100=160X = 1.6 \times 100 = 160 Therefore, the value of X is 160.

Practice Questions

  1. A -ன் 80 % = B -ன் 50 % மற்றும் B = A-ன் X% எனில் X-ன் மதிப்பு என்ன?

    a) 400 b) 300 c) 160 d) 150

    Answer: c) 160

    Solution

    A-ன் 80 % = B-ன் 50 %

    80100×A=50100×B\frac{80}{100} \times A = \frac{50}{100} \times B

    To find B in terms of A:

    B=A×80100×10050B = A \times \frac{80}{100} \times \frac{100}{50} B=85A    B=1.6AB = \frac{8}{5} A \implies B = 1.6 A

    We are given B = X% of A, which is B=X100×AB = \frac{X}{100} \times A.

    1.6A=X100A1.6 A = \frac{X}{100} A X=1.6×100=160X = 1.6 \times 100 = 160

    Therefore, the required value X = 160.

    Why this question belongs to Percentage

    This question involves keywords like %, A-ன் 80 % (80% of A), and B = A-ன் X% which directly relate to the concept of finding a percentage value by comparing two quantities.

  2. A -ன் 90 % = B -ன் 30 % மற்றும் B = A -ன் X% எனில் X-ன் மதிப்பு என்ன?

    a) 500 b) 350 c) 300 d) 700

    Answer: c) 300

    Solution

    A-ன் 90 % = B-ன் 30 %

    90100×A=30100×B\frac{90}{100} \times A = \frac{30}{100} \times B

    Solving for B:

    B=A×90100×10030B = A \times \frac{90}{100} \times \frac{100}{30} B=9030A    B=3AB = \frac{90}{30} A \implies B = 3A

    Now, using B = X% of A:

    3A=X100×A3A = \frac{X}{100} \times A X=3×100=300X = 3 \times 100 = 300

    Therefore, the required value X = 300.

    Why this question belongs to Percentage

    This question uses percentage terms like 90 %, 30 %, and asks to find X%, making it a core percentage problem focused on algebraic comparison.

  3. A -ன் 70 % = B -ன் 40 % மற்றும் B=A -ன் X% எனில் X-ன் மதிப்பு என்ன?

    a) 175 b) 195 c) 225 d) 255

    Answer: a) 175

    Solution

    A-ன் 70 % = B-ன் 40 %

    70100×A=40100×B\frac{70}{100} \times A = \frac{40}{100} \times B

    Solving for B:

    B=A×70100×10040B = A \times \frac{70}{100} \times \frac{100}{40} B=74AB = \frac{7}{4} A

    Now, using B = X% of A:

    74A=X100×A\frac{7}{4} A = \frac{X}{100} \times A X=74×100=7×25=175X = \frac{7}{4} \times 100 = 7 \times 25 = 175

    Therefore, the required value X = 175.

    Why this question belongs to Percentage

    This question requires converting relationships given in percentages (70%, 40%) into an equation to find an unknown percentage (X%).

  4. A -ன் 80 % = B -ன் 60 % மற்றும் B = A -ன் X% எனில் X-ன் மதிப்பு என்ன?

    a) 15613156 \frac{1}{3} b) 14313143 \frac{1}{3} c) 13313133 \frac{1}{3} d) 17413174 \frac{1}{3}

    Answer: c) 13313133 \frac{1}{3}

    Solution

    A-ன் 80 % = B-ன் 60 %

    80100×A=60100×B\frac{80}{100} \times A = \frac{60}{100} \times B

    Solving for B:

    B=A×80100×10060B = A \times \frac{80}{100} \times \frac{100}{60} B=8060A    B=43AB = \frac{80}{60} A \implies B = \frac{4}{3} A

    Now, using B = X% of A:

    43A=X100×A\frac{4}{3} A = \frac{X}{100} \times A X=43×100=4003X = \frac{4}{3} \times 100 = \frac{400}{3} X=13313X = 133 \frac{1}{3}

    Therefore, the required value X=13313X = 133 \frac{1}{3}.

    Why this question belongs to Percentage

    This problem is a percentage comparison question that results in a fractional percentage, testing the ability to handle division and mixed fractions within a percentage context.

  5. A -ன் 30 % = B -ன் 20 % மற்றும் B=A -ன் X% எனில் X-ன் மதிப்பு என்ன?

    a) 190 b) 120 c) 150 d) 260

    Answer: c) 150

    Solution

    A-ன் 30 % = B-ன் 20 %

    30100×A=20100×B\frac{30}{100} \times A = \frac{20}{100} \times B

    Given B = X % of A. First, let's solve for B:

    B=A×30100×10020B = A \times \frac{30}{100} \times \frac{100}{20} B=32AB = \frac{3}{2} A

    Now, using B = X% of A:

    32A=X100×A\frac{3}{2} A = \frac{X}{100} \times A X=32×100=3×50=150X = \frac{3}{2} \times 100 = 3 \times 50 = 150

    Therefore, the required value X = 150.

    Why this question belongs to Percentage

    This question involves the core skill of equating two percentage-based expressions (30% of A, 20% of B) and then expressing one variable as a percentage of another.

  6. A -ன் 60 % = B -ன் 30 %, B = C -ன் 40%, மற்றும் C = A -ன் X% எனில் X-ன் மதிப்பு என்ன?

    a) 200 b) 500 c) 800 d) 700

    Answer: b) 500

    Solution

    Step 1: Relate A and B.

    60100A=30100B    2A=B\frac{60}{100} A = \frac{30}{100} B \implies 2A = B

    Step 2: Relate B and C using the result from Step 1. We are given B=40100CB = \frac{40}{100} C. Substitute B=2AB=2A:

    2A=40100C2A = \frac{40}{100} C

    Step 3: Solve for C in terms of A.

    C=2A×10040=2A×104=2A×52C = 2A \times \frac{100}{40} = 2A \times \frac{10}{4} = 2A \times \frac{5}{2} C=5AC = 5A

    Step 4: Use the final condition C = X% of A.

    5A=X100×A5A = \frac{X}{100} \times A X=5×100=500X = 5 \times 100 = 500

    Therefore, the required value X = 500.

    Why this question belongs to Percentage

    This problem is a multi-step percentage question involving three variables (A, B, C). It requires chaining percentage relationships (% of A = % of B, % of B = % of C) to find the final percentage relationship between C and A.

  7. A-ன் 30 % = B-ன் 10 % மற்றும் B = C-ன் 30%, C = A-ன் X% எனில் X-ன் மதிப்பு என்ன?

    a) 1000 b) 700 c) 900 d) 650

    Answer: a) 1000

    Solution

    Step 1: Relate A and B.

    30100A=10100B    3A=B\frac{30}{100} A = \frac{10}{100} B \implies 3A = B

    Step 2: Relate B and C using the result from Step 1. We are given B=30100CB = \frac{30}{100} C. Substitute B=3AB=3A:

    3A=30100C3A = \frac{30}{100} C

    Step 3: Solve for C in terms of A.

    C=3A×10030=A×10010C = 3A \times \frac{100}{30} = A \times \frac{100}{10} C=10AC = 10A

    Step 4: Use the final condition C = X% of A.

    10A=X100×A10A = \frac{X}{100} \times A X=10×100=1000X = 10 \times 100 = 1000

    Therefore, the required value X = 1000.

    Why this question belongs to Percentage

    This is a chained percentage problem. The solution requires expressing B in terms of A, then C in terms of B, and finally C in terms of A to find the value of X%.

  8. A -ன் 90 % = B -ன் 40 % மற்றும் B = C -ன் 60%, C = A -ன் X% எனில் X-ன் மதிப்பு என்ன?

    a) 155 b) 375 c) 215 d) 380

    Answer: b) 375

    Solution

    Step 1: Relate A and B.

    90100A=40100B    94A=B\frac{90}{100} A = \frac{40}{100} B \implies \frac{9}{4} A = B

    Step 2: Relate B and C using the result from Step 1. We are given B=60100CB = \frac{60}{100} C. Substitute B=94AB = \frac{9}{4} A:

    94A=60100C\frac{9}{4} A = \frac{60}{100} C

    Step 3: Solve for C in terms of A.

    C=94A×10060=94A×106=94A×53C = \frac{9}{4} A \times \frac{100}{60} = \frac{9}{4} A \times \frac{10}{6} = \frac{9}{4} A \times \frac{5}{3} C=3×54A=154AC = \frac{3 \times 5}{4} A = \frac{15}{4} A

    Step 4: Use the final condition C = X% of A.

    154A=X100A\frac{15}{4} A = \frac{X}{100} A X=154×100=15×25=375X = \frac{15}{4} \times 100 = 15 \times 25 = 375

    Therefore, the required value X = 375.

    Why this question belongs to Percentage

    This question involves multiple percentage relationships (90%, 40%, 60%) that must be solved sequentially to find the final percentage X%.

  9. A -ன் 50 % = B -ன் 30 % மற்றும் B = C -ன் 70%, C = A-ன் X% எனில் X-ன் மதிப்பு என்ன?

    a) 235421235 \frac{4}{21} b) 2161021216 \frac{10}{21} c) 238221238 \frac{2}{21} d) 211417211 \frac{4}{17}

    Answer: c) 238221238 \frac{2}{21}

    Solution

    Step 1: Relate A and B.

    50100A=30100B    53A=B\frac{50}{100} A = \frac{30}{100} B \implies \frac{5}{3} A = B

    Step 2: Relate B and C using the result from Step 1. We are given B=70100CB = \frac{70}{100} C. Substitute B=53AB = \frac{5}{3} A:

    53A=70100C\frac{5}{3} A = \frac{70}{100} C

    Step 3: Solve for C in terms of A.

    C=53A×10070=53A×107C = \frac{5}{3} A \times \frac{100}{70} = \frac{5}{3} A \times \frac{10}{7} C=5021AC = \frac{50}{21} A

    Step 4: Use the final condition C = X% of A.

    5021A=X100A\frac{50}{21} A = \frac{X}{100} A X=5021×100=500021X = \frac{50}{21} \times 100 = \frac{5000}{21}

    Converting to a mixed fraction: 5000÷21=2385000 \div 21 = 238 with a remainder of 22.

    X=238221X = 238 \frac{2}{21}

    Therefore, the required value X=238221X = 238 \frac{2}{21}.

    Why this question belongs to Percentage

    This is a complex chained percentage problem that requires careful fraction manipulation and conversion to a mixed fraction, testing a deeper understanding of percentage calculations.

  10. A -ன் 70 % = B -ன் 30 % மற்றும் B = C -ன் 50%, C = A -ன் X% எனில் X-ன் மதிப்பு என்ன?

    a) 46423464 \frac{2}{3} b) 46623466 \frac{2}{3} c) 47223472 \frac{2}{3} d) 47523475 \frac{2}{3}

    Answer: b) 46623466 \frac{2}{3}

    Solution

    Step 1: Relate A and B.

    70100A=30100B    73A=B\frac{70}{100} A = \frac{30}{100} B \implies \frac{7}{3} A = B

    Step 2: Relate B and C using the result from Step 1. We are given B=50100CB = \frac{50}{100} C. Substitute B=73AB = \frac{7}{3} A:

    73A=50100C\frac{7}{3} A = \frac{50}{100} C

    Step 3: Solve for C in terms of A.

    C=73A×10050=73A×2C = \frac{7}{3} A \times \frac{100}{50} = \frac{7}{3} A \times 2 C=143AC = \frac{14}{3} A

    Step 4: Use the final condition C = X% of A.

    143A=X100A\frac{14}{3} A = \frac{X}{100} A X=143×100=14003X = \frac{14}{3} \times 100 = \frac{1400}{3}

    Converting to a mixed fraction: 1400÷3=4661400 \div 3 = 466 with a remainder of 22.

    X=46623X = 466 \frac{2}{3}

    Therefore, the required value X=46623X = 466 \frac{2}{3}.

    Why this question belongs to Percentage

    This question uses keywords like 70 % of A, 30 % of B, 50 % of C to create a chain of dependencies. Solving it requires isolating variables through multiple percentage equations.